skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Mingxi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 16, 2026
  2. IntroductionThis paper addresses the critical need for adaptive formation control in Autonomous Underwater Vehicles (AUVs) without requiring knowledge of system dynamics or environmental data. Current methods, often assuming partial knowledge like known mass matrices, limit adaptability in varied settings. MethodsWe proposed two-layer framework treats all system dynamics, including the mass matrix, as entirely unknown, achieving configuration-agnostic control applicable to multiple underwater scenarios. The first layer features a cooperative estimator for inter-agent communication independent of global data, while the second employs a decentralized deterministic learning (DDL) controller using local feedback for precise trajectory control. The framework's radial basis function neural networks (RBFNN) store dynamic information, eliminating the need for relearning after system restarts. ResultsThis robust approach addresses uncertainties from unknown parametric values and unmodeled interactions internally, as well as external disturbances such as varying water currents and pressures, enhancing adaptability across diverse environments. DiscussionComprehensive and rigorous mathematical proofs are provided to confirm the stability of the proposed controller, while simulation results validate each agent’s control accuracy and signal boundedness, confirming the framework’s stability and resilience in complex scenarios. 
    more » « less
    Free, publicly-accessible full text available February 14, 2026
  3. Seabed mapping is a common application for marine robots, and it is often framed as a coverage path planning problem in robotics. During a robot-based survey, the coverage of perceptual sensors (e.g., cameras, LIDARS and sonars) changes, especially in underwater environments. Therefore, online path planning is needed to accommodate the sensing changes in order to achieve the desired coverage ratio. In this paper, we present a sensing confidence model and a uncertainty-driven sampling-based online coverage path planner (SO-CPP) to assist in-situ robot planning for seabed mapping and other survey-type applications. Different from conventional lawnmower pattern, the SO-CPP will pick random points based on a probability map that is updated based on in-situ sonar measurements using a sensing confidence model. The SO-CPP then constructs a graph by connecting adjacent nodes with edge costs determined using a multi-variable cost function. Finally, the SO-CPP will select the best route and generate the desired waypoint list using a multi-variable objective function. The SO-CPP has been evaluated in a simulation environment with an actual bathymetric map, a 6-DOF AUV dynamic model and a ray-tracing sonar model. We have performed Monte Carlo simulations with a variety of environmental settings to validate that the SO-CPP is applicable to a convex workspace, a non-convex workspace, and unknown occupied workspace. So-CPP is found outperform regular lawnmower pattern survey by reducing the resulting traveling distance by upto 20%. Besides that, we observed that the prior knowledge about the obstacles in the environment has minor effects on the overall traveling distance. In the paper, limitation and real-world implementation are also discussed along with our plan in the future. 
    more » « less